Outline

• Brief Review of Several Protocols
 • Modbus
 • DNP3
 • DLMS/COSEM
 • ANSI C.12
 • IEC 61850
 • ICCP-TASE.2
 • OpenADR

• Impact on Smart Grid Applications
 » Demand Response
 » Distributed Renewable Integration
 » Utility Analytics
 » Wide Area Protection
Modbus

• The simplest protocol in use in utilities:
 » Master/Slave network access
 » Most Basic protocol:
 • Station Address
 • Function Code (read and write)
 • Data + Length
 • Checksum
 » Multiple Link Types
 • RS-232, RS-485 and TCP/IP-Ethernet
 » Simple data types
 • Integer, floating point, boolean, integer of booleans
 » No reporting
 » No time stamps
 » No quality
 » No authentication
 » User group supports specification
DNP3 and IEC 60870-5

- Widely used protocol in electric energy industry
 - Master/Slave network access
 - Multiple Link Types
 - RS-232, RS-485 and TCP/IP-Ethernet
 - 3 bytes to describe data:
 - Object #: binary input static, integer, control output, float, etc.
 - Variation #: With status, without status, time stamped, etc.
 - Index #: Refers to a specific instance of an object.
 - SBO and direct control operations
 - Polling and Report by exception, Sequence of Events and more.
 - Formalized method of expressing mapping to IEC 61850 models
 - Authentication options available
 - DNP3 Users Group supports standard and interoperability test set.

© Copyright 2014 SISCO, Inc.
ANSI C.12 Metering Protocols

- Specific purpose protocols for AMI
 - Read and Write of ANSI C.12.19 defined tables
 - data types related to common AMI functions like energy count, demand, min/max, etc. (floats, integers and characters)
 - Standardized date/time representations
 - Definitions for the configuration of these tables
 - Standardize table formats
 - Manufacturer tables
- Unsolicited Device Events
 - C.12.18, C12.21, C.12.22 provide mappings of these tables to a variety of link types:
 - Modems, IP Based networks, (TCP/UDP), etc.
 - Authentication and encryption options
 - Registrars for registering devices unique IDs.
 - Individual test labs providing testing services.

<table>
<thead>
<tr>
<th>Mfg Table Property*</th>
<th>Required</th>
<th>Global Default Table Property Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>label</td>
<td>No</td>
<td>Table name</td>
</tr>
<tr>
<td>type</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>role</td>
<td>No</td>
<td>"UNDEFINED"</td>
</tr>
<tr>
<td>associate</td>
<td>No</td>
<td>Scope of the TDL or decade where defined</td>
</tr>
<tr>
<td>atomic</td>
<td>No</td>
<td>"false"</td>
</tr>
<tr>
<td>accessibility</td>
<td>No</td>
<td>"READWRITE"</td>
</tr>
<tr>
<td>deprecated</td>
<td>No</td>
<td>"false"</td>
</tr>
<tr>
<td>metrological</td>
<td>No</td>
<td>"false"</td>
</tr>
<tr>
<td>volatile</td>
<td>No</td>
<td>"AUTO AS PER ROLE"</td>
</tr>
<tr>
<td>Class</td>
<td>No</td>
<td>"STD"</td>
</tr>
</tbody>
</table>

TYPE TABLE_IDA_BFLD = BIT FIELD OF UINT16
 TBL_PROC_NBR : UINT(0..10);
 MFG_FLAG : BOOL(11);
 PENDING_FLAG : BOOL(12);
 EUDT_FLAG : BOOL(13);
 FLAG2 : BOOL(14);
 FLAG3 : BOOL(15);
END;
DLMS/COSEM

- AMI metering protocol in widespread usage outside of NA.
 - Supports client/server and unsolicited communications using two-party-application association model similar to ICCP and IEC 61850 as well as connectionless data transfer.
 - Uses COSEM Interface classes and Object Identification Systems (OBIS) over Device Language Messaging System (DLMS) to implement metering functions. OBIS objects are collected into tables not unlike ANSI C12.
 - Support for serial (HDLC), ATM, Ethernet, LAN and WAN IP based networks.
 - Authentication and encryption supported.
 - DLMS Users Association defines OBIS, conformance and interoperability testing.
 - Protocols specified by IEC.

© Copyright 2014 SISCO, Inc.
IEC 61850: A New Approach to Power System Communications

» Standardized Device, Object and Service/Behavior Modeling

» Standardized Communications Protocols and Profiles for Specific Use Cases:
 › Station Level Monitoring and Control (substation SCADA) (TCP/IP)
 › Protection and Control – Multicast GOOSE over Ethernet
 › Sampled Values – Process Bus over Ethernet
 › Wide Area Measurement Protection and Control (WAMPAC): GOOSE and process bus using secure IP Multicast

» Read, Write, buffered reporting, controls, logging, files, etc.

» Formalized engineering process to configure power system functions and create interoperable configuration files for IEDs using Substation Configuration Language.

» UCAIug and IEC Users Group supports conformance/interoperability testing and user feedback

Specifications supported by the IEC.
ICCP-TASE.2

- Protocol originally developed for control center to control center data exchange.
 - Client/server communications over TCP/IP
 - Bilateral configuration to enable each side to control data exchanged
 - Tag name based point addressing with data sets and client configured reporting.
 - Polling, report by exception and controls.
 - Specifications supported by the IEC.
 - Smart Grid Applications?
 - Power plant dispatching
 - **Negative power plant dispatching** (a.k.a. Demand Response)
OpenADR

• Open Automatic Demand Response standardizes the message format used for Auto-DR to support price and reliability signals in a uniform and interoperable fashion.
 » http and XMPP transport profiles (IP based). XMPP provides discovery services
 » Application profile specifies mandatory and option parameters for web service messaging:
 • Registration
 • Enrollment
 • Market Contexts
 • Event
 • Quotes/Dynamic Prices
 • Reporting/Feedback
 • Availability
 • Override direct signalling.
 » OpenADR alliance supports the specifications and conformance/interoperability testing
OpenADR for Demand Response

• A good platform for implementation of local control systems based on real-time pricing signals
 » organizational support
 » testing program
 » Support by products

• Problematic for many utilities to implement real-time pricing policies to take advantage of distributed control systems responding via OpenADR.
 » Regulatory and political hurdles to be cleared.
Demand Response using OpenADR

Generation/Demand Management

Positive Dispatching

ICCP

Negative Dispatching

Demand Aggregator

OpenADR

Demand Response Approach

Generation Dispatch Approach
Impact on Renewables
Integration
Distributed Solar
Renewable Integration - Solar

• Sun Spec Alliance has developed a Modbus based communication protocol for grid connected inverters.

• At a 2010 industry event a Sun Spec representative told me:
 » IEC 61850 was too complex for grid connected inverters.
 » Modbus was simple and easy to implement.
 » Even DNP3 was too complex (Sun Spec is now working on a DNP3 Transport Mapping).

• Let’s look at how simple grid connected inverters are using Modbus
Modbus mapping from non-Sun Spec product

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>CompoWay/F Type Code</th>
<th>Modbus Type Code</th>
<th>Variable Identifier</th>
<th>KPCCCL (CompoWay/F & Modbus)</th>
<th>KP100G (CompoWay/F)</th>
<th>KP40G (CompoWay/F)</th>
<th>Model Name</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>04</td>
<td>11a</td>
<td>Country setting</td>
<td>0x01: Italy</td>
<td>0x02: Italy</td>
<td>0x00: Italy</td>
<td>SI2-DC-OD-1</td>
<td>SI2-DC-OD-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x02: France</td>
<td>0x03: Spain</td>
<td>0x04: Korea</td>
<td>SI2-DC-OD-2</td>
<td>SI2-DC-OD-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x05: Germany</td>
<td>0x06: Italy</td>
<td>0x04: PP</td>
<td>SI2-DC-OD-3</td>
<td>SI2-DC-OD-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x07: Greece</td>
<td>0x08: Italy</td>
<td>0x05: PC</td>
<td>SI2-DC-OD-4</td>
<td>SI2-DC-OD-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x09: Czech Republic</td>
<td>0x0A: Italy</td>
<td>0x06:瑞士</td>
<td>SI2-DC-OD-5</td>
<td>SI2-DC-OD-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x0B: Turkey</td>
<td>0x0C: Spain</td>
<td>0x07: FF</td>
<td>SI2-DC-OD-6</td>
<td>SI2-DC-OD-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x0D: Portugal</td>
<td>0x0E: Spain</td>
<td>0x08: EF</td>
<td>SI2-DC-OD-7</td>
<td>SI2-DC-OD-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x0F: Switzerland</td>
<td>0x10: Italy</td>
<td>0x09: FF</td>
<td>SI2-DC-OD-8</td>
<td>SI2-DC-OD-8</td>
</tr>
</tbody>
</table>

0001	1a	11a	The number of DC input	0x01: 1 input	0x02: 1 input	0x03: 3 inputs	0x04: 4 inputs	0x05: 6 inputs
				0x06: 8 inputs	0x07: 10 inputs	0x08: 12 inputs	0x09: 14 inputs	0x0A: 16 inputs
				0x0B: 18 inputs	0x0C: 20 inputs	0x0D: 22 inputs	0x0E: 24 inputs	0x0F: 26 inputs

| C1 | 0000 | 5500 | Setting value of overvoltage (OV) | 0x00:000000 to 0x00000D hex |
| | 0001 | 5502 | Setting value of undervoltage (UV) | 0x00:000000 to 0x00000D hex |

| 0002 | 5500 | 5502 | Setting value of overfrequency (OF) | 0x00:000034 to 0x00000D hex |

© Copyright 2014 SISCO, Inc.
4-Secure Dataset Read Response

<table>
<thead>
<tr>
<th>Start Offset</th>
<th>End Offset</th>
<th>Size</th>
<th>R/W</th>
<th>Name</th>
<th>Label</th>
<th>Type</th>
<th>Units</th>
<th>SF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>R</td>
<td>ID</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
<td>A well-known value 4. Uniquely identifies this as a SunSpec Secure Dataset Read Response Model</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>R</td>
<td>L</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
<td>Variable # of 16 bit registers to follow : 60+N*1</td>
</tr>
</tbody>
</table>

4 Secure Dataset Read Response Fixed Block (60)

<table>
<thead>
<tr>
<th>Start Offset</th>
<th>End Offset</th>
<th>Size</th>
<th>R/W</th>
<th>Name</th>
<th>Label</th>
<th>Type</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>RqSeq</td>
<td>Request Sequence</td>
<td>unit16</td>
<td></td>
<td>Sequence number from the request</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>R</td>
<td>Sts</td>
<td>Status</td>
<td>unit16</td>
<td></td>
<td>Status of last read operation</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>unit16</td>
<td></td>
<td>Number of values from the request</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>R</td>
<td>Val1</td>
<td>Value1</td>
<td>unit16</td>
<td></td>
<td>Copy of value from register Off1.</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>R</td>
<td>Val2</td>
<td></td>
<td>unit16</td>
<td></td>
<td>Unused values shall return 0xFFFF</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>R</td>
<td>Val3</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>R</td>
<td>Val4</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>R</td>
<td>Val5</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>R</td>
<td>Val6</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
<td>R</td>
<td>Val7</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1</td>
<td>R</td>
<td>Val8</td>
<td></td>
<td>unit16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 75 tabs on this spreadsheet.
Renewable Integration - Solar

• In California:
 » There are 2,164 different models of inverters from 151 different manufacturers that are approved for grid connection of solar panels.

• Sun Spec Alliance:
 » 18 manufacturers with Sun Spec certified Modbus interfaces.

• According the LA times:
 » There are > 230,000 solar homes in California

• Will it be “simple” to integrate these homes with utility scale applications to build an intelligent grid leveraging solar resources using Modbus?

• Good news: they are mapping this DNP3.

• Bad news: they are only just NOW mapping this to DNP3.
Why Does This Happen?

- Assuming product implementation complexity results in application complexity
- Assuming that technology constraints today will be valid over the life of the product
- Assumption that user configuration is reasonable because it is understandable
- Cynically: User effort costs less than development
Where should the complexity be handled?

- **Power System Functions**
 - Measurements:
 - Phase A Voltage
 - Phase B Voltage
 - Phase C Voltage
 - Controls:
 - Local/Remote Status
 - Breaker Position
 - Blocked Open
 - Protection:
 - Activate Phase A
 - Activate Phase B
 - Activate Phase C

- **Modbus**
 - R400040
 - R400041
 - R400042
 - R400043
 - R400044
 - R400045
 - R400046
 - R400047
 - R400048
 - R400049
 - R40004A
 - R40004B

- **Applications**
 - 230,000 mappings developed by users

- **Devices**
 - 2,154 mappings developed by mfgers.
Impact on Utility Analytics

AMI Analytics
AMI Protocols

- Metering network media dictates solutions:
 - Very large number of end points
 - Large variety of media available
 - Variety of meter types, brands, styles

- Both ANSI C.12 and DLMS/COSEM exhibit similar characteristics

- Widespread use of “AMI Head-Ends” and/or MDMs that collect data via protocols and present meter data in an application oriented context to applications.

- Proprietary, MultiSpeak, and CIM IEC 61968-9 messaging and RDBMS are used.

- Not considering CIM, data models used by analytics tend to be user driven
Typical Approach for Analytic Data Modeling

• Each group looks at its own application needs and develops a data model that is optimized for its own use:
 » Only data needed for its application is considered.
 » New data model elements are added as needed based on needs of individual applications.

• The “Ad-Hoc” Approach
Impact of Ad Hoc Approach for Application Data Models

- Each Application has its own data model.
- Each application defines the same objects differently.
- Impact of cross-organizational integration and data sharing ignored.
What breaks it? Change

• Addressing change becomes too difficult when each application uses its own incompatible data modeling:
 » Business needs demand organizational changes and new levels of data sharing and integration.
 » New technology must be addressed (e.g. renewables, DER, “deregulation”, etc.

• Result: Application rewrites, reintegration, project delays, barriers to data sharing.

• The “Bigger” the data, the more the negative impact will be of not using a consistent common data model.
Why Does This Happen?

- Misunderstanding the Use Case
- Is this really the use case that should drive choices?
Here is a Real Use Case
How To Address the Real Use Case

• There is no need to develop a solution for every integration point. This is not possible.

• Ignoring everything other than the small handful of use cases that need to be addressed immediately will not result in a scalable system.

• The architecture needs to utilize a process by which the integration of each element is based on a common approach where shared data models are leveraged not redefined.

• Model-Driven Integration
Common Information Model (CIM)

- Encompasses all aspects of power systems
 - Planning
 - Operations
 - Transmission
 - Distribution
 - Markets

UML – Unified Modeling Language
Model-Driven Data Using CIM

- CIM is flexible to accommodate:
 - Extensions for non-standard business needs
 - Eliminate the complexity of unused models
- Profiles are created based on use cases to address specific needs
- Instances created to relate existing data to the CIM Profile schema
- Model can be used to configure analytics.
- Analytics use models to access data eliminating custom tag name dependency.
CIM Data Models Deliver Flexibility

- Multiple uses cases can be addressed with one profile.
- Multiple profiles can be supported for use cases that can’t share a profile.
- A disciplined modeling process with CIM provides models optimized for all applications.
CIM Helps Manage Change

- The model driven process captures change and creates incremental updates.

- The individual hierarchies can be updated and kept synchronized with each other.
CIM Is The Only Choice for the Model-Driven Utility

- Developing your own comprehensive utility data model to replace CIM will take many decades of effort.
 - How many experts can your utility hire to design this from scratch?
- CIM is specifically designed to be adapted to fit the needs of individual utility use cases:
 - Extensions
 - Profiles/subsets
 - Messages
 - Integration Patterns
- New applications can extend independently yet share the existing models where needs overlap without breaking existing applications and integration.
CIM vs. Protocols (IEC 61850)

IEC61970/68 CIM
- Power System Models
- Metering, trading, etc.

IEC61850
- Power System Models
- Device Models

Measurements

WG19 Harmonization
CIM vs. Protocols (DNP3)

IEC 61970/68 CIM
- Power System Models
- Metering, trading, etc.

DNP3
- Obj#, Var#, Index#
- IEC 61850 Device Models

Measurements

MAPPING
CIM vs. Protocols (ICCP-TASE.2)

IEC61970/68 CIM
- Power System Models
- Metering, trading, etc.

ICCP-TASE.2
- Bilateral Tables
- SCADA data & controls

Edition 3 of ICCP

Measurements
CIM vs. Protocols (OpenADR)

IEC61970/68 CIM
- Power System Models
- Metering, trading, etc.

Possibility of future support for native CIM messaging

OpenADR
- R/T Pricing
- Demand Response

Measurements

MAPPING

MAPPING
CIM vs. Protocols (ANSI C.12 – DLMS/COSEM)

IEC61970/68 CIM
- Power System Models
- Metering, trading, etc.

AMI Protocols
- Tables
- OBIS – Table Data

Measurements

Headend
Wide Area Protection
Centralized Remedial Action Systems
Why RAS is Needed

- Long lines separating load and generation need protection to prevent damage from generation tripping.

- Increasing reserve margins to protect lines reduces available energy.

- Maintaining system stability during anomalous conditions challenges operators to respond quickly to prevent cascade failure.

- More transmission capacity in the same corridor is subject to the same contingencies and results in increasing reserve margins.
Individual Remedial Action Schemes and Special Protection Systems (RAS/SPS)

- Protects lines from damage during anomalous conditions.
- Individual RAS are available using traditional approaches involving hardwired devices within local areas.
Multiple Individual RAS

- Deploying multiple individual RAS practical because little interaction between RAS.
- Difficult to maintain and update as number of RAS increases.
Integration of Multiple Individual RAS into a Distributed RAS

- Addressing system stability requires integration of multiple RAS over a wide area.
- Information sharing and interactions between individual RAS using traditional techniques increases complexity and cost beyond what is practical.
Centralized Remedial Action Systems (C-RAS)

- Centralized control reduces complexity of information sharing making implementation feasible.
- Centralization of control requires a network architecture to support very reliable high speed communications of events and controls.
C-RAS Architecture

Web Services Using CIM

IEC 61850 GOOSE
C-RAS Architecture

Web Services Using CIM

IEC 61850 GOOSE

50 Millisecond Round Trip Fault to Mitigation
Protocol Usage Enables Solution

- **IEC 61850 GOOSE:**
 - High-speed reliable multicast messaging delivers fault data to control centers quickly
 - Use of VLANs and Priority tagging enables implementation of complex interconnection VLAN networks.
 - Ability to use XML definition of data objects to convey context inherent in the messaging.

- Simply not possible with master/slave protocols like Modbus or even DNP3.
Summary

• Protocol characteristics can have a significant impact on application performance, capability, maintainability, and scalability.

• Simple protocols are not necessarily always the best choice because system complexity is not necessarily reduced by using very simple devices.
Thank You For Your Attention

Ralph Mackiewicz
SISCO, Inc.
6605 19½ Mile Road
Sterling Heights, MI 48314-1408 USA
Tel: +1-586-254-0020 x103
Fax: +1-586-254-0053
Email: info@sisconet.com
http://www.sisconet.com

© Copyright 2014 SISCO, Inc.